Intestinal MMC-related electric fields and pancreatic juice control the adhesion of Gram-positive and Gram-negative bacteria to the gut epithelium - in vitro study

Abstract
The adhesion of six different Lactobacillus and Lactococcus and three pathogenic Escherichia and Salmonella strains was studied using Caco-2 cell line. In this in vitro model system the influence of weak electric field (EF) on bacterial adhesion was tested. The EF source was the in vitro reconstruction of spiking potentials recorded in the duodenum of a healthy calf during one myoelectrical migration complex (MMC) cycle. The ability to adhere to Caco-2 cells of bacteria belonging to two groups, Gram-positive lactobacilli and lactococci, and Gram-negative Escherichia and Salmonella differed considerably. The pathogenic bacteria adhered better to well-differentiated Caco-2 cells whereas lactobacilli and lactococci displayed better adhesion to non-differentiated Caco-2 cells. In the presence of MMC-related EF an increased adhesion of Lactobacillus and Lactococcus but not of Salmonella enterica s. Enteritidis and E. coli 269 to Caco-2 cells was observed. Two later strains adhered even less in the presence of EF. The same tendency was found in the presence of pancreatic juice in a cell medium. In conclusion, the myoelectric component of the small intestinal motility, the MMC-related EF, and pancreatic juice may increase the ability of lactic acid bacteria to adhere to GI epithelial cells, creating better environmental conditions for colonization of the intestine and competition with Gram-negative pathogens.
Description
Keywords
adhesion, Caco-2, bacteria, MMC-related electric field
Citation
"Journal of Physiology and Pharmacology", 2008, Vol. 59, nr 4, s. 795-810
ISBN
Creative Commons License