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The DFT calculations of the simplified model of the asymmetric Suzuki–Miyaura coupling reaction were performed at the
M062x/LANL2DZ theory level at first. It was found that enantioselective reactions mediated by the palladium complexes of chiral
C,P-ligands follow a four-stage mechanism similar to that proposed previously as one of the most credible mechanisms. It should
be underlined that the presence of substituents in the substrates and the chiral ligand at ortho positions determines the energies
of possible diastereoisomeric transition states and intermediates in initial reaction steps. This suggests that, in practice, a sharp
selection of theoretically possible paths of chirality transfer from the catalyst to the product should have a place and, therefore, the
absolute configuration of the formed atropisomeric product is defined and can be predicted.

1. Introduction

Palladium mediated cross-coupling reactions constitute one
of themain synthetic tools for creation of new carbon-carbon
bonds [1, 2]. The carbon atoms of all types of hybridisation,
possessing a variety of leaving or nonpreactivated groups, can
be connected together if properly designed catalysts are used.
Excellent chemical yields are usually observed in a majority
of cross-coupling reactions, even those run under mild con-
ditions.The notable progress observed during the last decade
in medicinal [3–6], material [7–10], and green chemistry
[11, 12] makes the issue of efficient asymmetric synthesis
of drug precursors, functional materials, and fine chemicals
significantly urgent, since chiral nonracemic compounds
have already found wide industrial application. Among all
cross-coupling reactions, only the asymmetric Heck coupling
(and its several modifications, e.g., the Fujiwara-Moritani
reaction and oxidative boron Heck-type reactions) is well
developed [13–15]. At the same time, the enantioselective

approach to other coupling reactions still remains challeng-
ing [16–18]. Without clear understanding of the mechanism
of chirality transfer from the chiral catalyst to the product,
a rational design of an efficient catalyst, tailored for a given
enantioselective coupling reaction, remains not possible and
consequent testing of a large quantity of similar ligands will
be a costly alternative [18, 19].

Herein, we are going to present the results of our com-
putational finding of the origin of asymmetric induction
in cross-coupling reactions. Since aryl-aryl bond forming
cross-couplings are mechanistically quite similar, in our
studies on enantioselective coupling we concentrated on
the Suzuki–Miyaura reaction, which is usually applied as a
method of first choice. The mechanics of the nonstereocon-
trolled Suzuki–Miyaura (and a few other couplings) reaction
catalysed by complexes of nonchelatingmonophosphines has
been studied in detail (Scheme 1) [20–29] and can be extrap-
olated to reactions catalysed by transition metal complexes
of different types and to stereoselective transformations. At
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Scheme 1: Generally accepted mechanism of SM reaction.

the same time, the nature of chirality transfer still remains
unclear and only general intuitivemechanistic considerations
have been published to date [30].

In highly enantioselective Suzuki–Miyaura couplings,
palladium complexes of significantly sterically hindered lig-
ands are usually used [16, 18]. Accurate computer calcu-
lations of such large complexes need an extremely large
computational cost. Additionally, for palladium catalysts
based on regular bidentate ligands (e.g., BINAP (I) [31])
and monodentate ligands (e.g., oligo-aryl phosphine (II) and
oligo-aryl phosphonites (III) [32]) (Figure 1), several different
models of solvation and mono- and biscomplexation should
be evaluated [23, 33–36]. Obviously, a discovery of subtle
interactions influencing the absolute configuration of the
product formed in the reaction mediated by interconverting
complexes of large phosphorus ligands cannot be accurate
because of many entropic issues that certainly take place but
are difficult to handle. In the case of less bulky and especially
bisphosphine chelating ligands, different types of 14-electron
PdL2 complexes have been postulated as active catalysts, and
corresponding products of the oxidative addition reactions
to such complexes have been characterised [37–40].Thus, we
decided to concentrate on highly efficient, also in asymmetric
SM reactions, chiral ligands of the C,P-type of complexation
represented by KenPhos and similar ones (IV) [30, 41, 42],
MeO-MOP (V) [43], and BisNap-Phos (VI) [44] (Figure 1).
These ligands form well-defined bidentate mono-P-liganded
Pd(0) species [45–48] with the structures formally corre-
sponding to the 12-electron Pd-P(III) active catalysts of the
SM reaction (Scheme 2, AC). The active catalyst is extremely
reactive and readily undergoes oxidative addition reaction
with aromatic halides to form intermediates with a well-
defined structure I1 [49, 50].

Even such simple complexes are spatially developed and
complicated enough not to allow accurate computation of
their fine properties and stereochemical behaviour if the
entire structure is considered. Nevertheless, in the case of
catalytic systems in which substrates and ligands do not
bear bending function groups (whose interaction can con-
trol the geometry of preordination intermediates) and the
catalyst is a complex of the C,P-ligand, the geometry of the
intermediates is less sensitive to the substitution pattern and
several coordinal simplifications can be applied. Thus, the
geometry of the palladium complexes will remain almost the
same if the cyclohexyl groups situated on the phosphorus
atom are replaced with methyl groups. Also, the biaryl
core of the ligand can be simplified to formally chiral 6,2󸀠-
dimethylbiphenyl, and eventually 2-bromotoluene and 2-
tolylboronic acid can be selected as the simplest substrates of
the enantioselective cross-coupling reaction (Scheme 3).This
significant simplification allows accurate DFT calculations
of the entire reactions leading to the chiral (but with low
racemisation energy) product [51].

With the objective of gaining insight into the origin
of stereoselectivity of the selected reacting system run in
aqueous media, we decided to perform DFT simulations
of possible reaction paths to confirm its actual molecular
mechanismandfind conditions influencing the configuration
of the chiral product formed.

2. Results and Discussion

2.1. Computational Procedure. The quantum-chemical cal-
culations reported in this paper were performed on “Zeus”
and “Prometheus” supercomputers in the “Cyfronet” com-
putational centre in Cracow. The M062x [52] functional
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implemented in the GAUSSIAN 09 package [53] was used.
This functional is dedicated for precise energetic considera-
tions [52, 54] and has been recently applied for simulation
of the reaction paths of several different reactions, includ-
ing arylic systems [55], phosphorus compounds [56], and
halogenide-derivatives [57, 58]. Critical structures are fully
optimized using basis sets: 6-31G(d) for H, C, O, B, Br, and P,
as well as LANL2DZ with one f function for Pd and without
pseudopotential. Identical basis sets have been recently used
for quantitative description of similar processes involving
similar chemical molecules [21]. For elementary reaction, in

which anionic species are involved, calculations using basis
set with one diffusion function were performed in parallel
to procedure described above. It was found that in this way
practically identical critical structures were obtained. Next,
we have reoptimized key, representative transition states
using M06 functional, in which HF exchange contribution is
significantly lower, than on the case of M062x functional. It
has been found that obtained structures are very similar to
those derived from M062x calculations. Thus, we concluded
that the applied theory level should be recognized as wholly
adequate to solve the presented problem.
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The Berny algorithm was applied for optimization of
the structure of the reactants and the reaction products.
First-order saddle points were localized using the QST2
procedure. Stationary points were characterised by frequency
calculations. All reactants and products had positive Hessian
matrices. All transition states showed only one negative
eigenvalue in their diagonalized Hessian matrices, and their
associated eigenvectors were confirmed to correspond to the
motion along the reaction coordinate under (IRC) calcula-
tions performed to connect previously computed transition
structures (TS) with suitable minima. For the calculations
of the solvent effect (presence of water), the polarizable
continuum model (PCM) [59], in which the cavity is created
via a series of overlapping spheres, was used. For optimized
structures, thermochemical data for the temperature 𝑇 =
298K and pressure 𝑝 = 1 atm were computed using vibra-
tional analysis data.

2.2. Catalyst Activation. According to the widely accepted
concept, monoliganded coordinatively unsaturated and
unstable 12-electron palladium complexes, which are formed
by dissociation of bulky diphosphine (or similar) complexes,
can be an active catalysts of the cross-coupling reaction
(Scheme 1). In the case of C,P-complexes, 12-electron active
catalyst is formed by dissociation of the Pd-C coordination
bond (Scheme 2), and the energy of this process may
influence the reaction rate. Several products of the oxidative
addition possessing only one ligand at the phosphorus atom
have been obtained and characterised [35, 36, 50, 60–62].
Thus, we decided to shed light on the energetic stability
of the model chiral catalytic complex 2 (Scheme 3). The

M062x calculations showed that the complex with “cyclic”
conformation (2) is more than 5.5 kcal/mol stable than the
competitive structure with “extended” conformation (2󸀠).
This is a consequence of failure of the Pd-C complexation
effect in 2󸀠.

Subsequently, we performed a similar study for a similar
fluorinated system illustrated in Figure 2 (structures 2a and
2a󸀠), in which the aryl system has a relatively more 𝜋-
deficient nature. In both cases, we reached a qualitatively
similar conclusion. Thus, it can be assumed that the C-
Pd complexation effect is important for stabilization of the
palladium-ligand complex irrespective of the nature of the
substitution of aryl moiety.

A possible way to evaluate the Pd-C binding energy is
“homolytic dissociation” (Figure 3) of the optimized complex
structure into frozen fragments (no optimization is done
for them). The uM062x/LANL2DZ calculation shows that
the following fragmentation requires energy (𝐸1) equal to
129.97 kcal/mol (Figure 3(a)). It includes Pd-Ar and Ar-
Ar binding energies. To exclude the Ar-Ar energy, similar
fragmentation is needed (Figure 3(b)). In this case, the
dissociation energy (𝐸2) is equal to 124.16 kcal/mol. The
difference 𝐸1 − 𝐸2 = 5.81 kcal/mol is due to Pd-C binding,
which is close to the value derived by rotating theAr-Ar group
leading to 2󸀠. The total stabilization due to the presence of
the Pd atom, calculated similarly by removal of the Pd atom
from the complex, is 32.36 kcal/mol. Similarly, the energy of
Pd-P binding was calculated to be equal to 15.16 kcal/mol.
Since the Pd-C interaction is significantly weaker than the
Pd-P one, we expect dissociation of Pd-P within the catalytic
cycle.
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2.3. Oxidative Addition Step. Next, we carried out a detailed
study of the mechanism of model cross-coupling involving
catalyst 2.The first stage includes formation of an adduct of 2-
bromotoluenewith catalyst 2 (Scheme 4). Since the palladium
atom is shielded with the aromatic ring, the attack of the
2-bromotoluene molecule on the Pd atom may take place
only from directions that are not shielded by the ligand. In
particular, four competitive paths were found, during which
the following processes take place: (1) creation of a Pd-Br
bond in the direction of the axis of the P-Pd coordination
bond (paths leading to adducts 5a and 5b, resp.) or (2)
creation of a Pd-Br bond in the direction perpendicular to
the axis of the P-Pd bond (paths leading to adducts 5c and
5d, resp.).

Thermodynamical analysis shows that in the case of all
the considered paths the reaction equilibrium is evidently
shifted towards the valley of the products. However, 5c
and 5d are relatively more stable. Free Gibbs enthalpy of
formation is below 29 kcal/mol for these compounds and
equal to ca. 19 kcal/mol for products 5a and 5b. Generally,

thermodynamic stability of theoretically possible products
should be ordered as follows: 5c > 5d≫ 5b > 5a.

Analyses of the kinetic aspects of the directions of sub-
strate transformations indicate that the reaction proceeding
according to path C is evidently kinetically favoured (Δ𝐺 ̸=
= 0.2 kcal/mol). Other paths should be considered as
unfavourable or outright forbidden from the kinetic point of
view (Figure 4).

The theoretically possible transformations between iso-
meric adducts 5a–d have also been analysed. It was found that
under reaction conditions all of these transitions should be
considered as forbidden from the kinetic point of view, since
in all of the considered cases the interconversion energy was
higher than 30 kcal/mol.

Thus, it should be assumed that an isomer that is formed
according to path C can be treated as a generally favoured
structure for a wide group of reactions. This product enters
the subsequent addition stages.

Two new bonds are formed within the transition state of
the 1 + 2→ 5c reaction—Pd-Br (𝑟 = 3.246 Å) and Pd-C(Ar)
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(𝑟 = 2.305 Å). This is accompanied by the breakage of the
Br-C(Ar) bond (𝑟 = 1.981 Å).

In addition to our theoretical studies, the relevance of
structure 5c can be confirmed by comparison of our theoreti-
cal considerations with the X-ray structures of similar C,P-
palladium complexes (VII) [63, 64] and, additionally, with
the same structure optimized using the M062x/LANL2DZ

theory level in simulated presence of water (VII󸀠), as shown
in Figure 5 and Table 1. It was found that the key angles and
interatomic distances were rather similar.

2.4. Transmetallation Step. The different possibilities of
transmetallation reaction that may take place in the second
stage of the asymmetric SM reaction were assessed. It has
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Table 1: Comparison of the key geometrical parameters of com-
plexes 5c, VII, and VII󸀠.

Parameter
P

Pd

12
3

Br
Ar

Cy
Cy

5c VII VII󸀠

𝑟Pd-P [Å] 2.417 2.407 2.266
𝑟P-C1 [Å] 1.871 1.834 1.877
AngleC2-C3-Pd [

∘] 103.17 106.08 106.73
AngleC3-Pd-P [

∘] 64.73 83.71 81.15
AnglePd-P-C1 [

∘] 113.88 106.35 105.19

been shown that the transmetallation step in a typical SM
coupling reaction does not proceed without the nucleophilic
additive, which enhances the electron density at the boron
atom through its coordination and formation of boron-ate
adduct [20, 21, 24, 65, 66]. In an aqueous solution of inor-
ganic bases, the role of this nucleophile may be played by

the hydroxyl anion. Thus, the second stage of the reac-
tion includes substitution of the bromine atom with the
ArB(OH)3

− anion (6) (Scheme 5). The alternative reaction
pathways involving the participation of neutral ArB(OH)2 or
Pd-OH species were not favourable.

Attack of molecule 6 on the Pd atom is possible only
when both methyl groups bound to phenyl rings are turned
opposite to the anion approach trajectory, attack according
to the “a” trajectory (Scheme 5). All attempts at finding
transition stages related to the theoretically possible process
of the approach of molecule 6 to the Pd atom along the “b”
trajectory failed.

During the approach to the Pd atom, the 6 anion may
theoretically assume various orientations. Two paths of such
an approach were found, differing in the orientation of the
methyl group within the anion. However, only one of these
should be considered kinetically permitted. The activation
barrier of the transition is 4.1 kcal/mol. This process takes
place via the TS2 transition state (Figures 6 and 7). The Pd-
Br bond (𝑟 = 2.696 Å) of this state becomes gradually more
loose, and at the same time a new Pd-O bond (𝑟 = 2.178 Å) is
formed. Conversion of the reacting system along the reaction
coordinate leads directly from TS2 to the product 7.

During the transmetallation stage, a boric acid molecule
is eliminated,with simultaneous formation of a bondbetween
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the palladium atom and the carbon atom of the phenyl ring
introduced into the reacting system from the ArB(OH)3

−

molecule.
This transformation takes place through the transition

state TS3 (Scheme 6) and requires the activation barrier Δ𝐺 ̸=
= 7.1 kcal/mol to be overcome. As a result of a synchronous,
circular electron shift within TS3, the bonds between the
palladium atom and the oxygen atom (𝑟 = 2.151 Å) and
between the boron atom and the carbon atom in position
1 of the phenyl ring become ruptured (𝑟 = 1.632 Å). This

is accompanied by formation of a new 𝜎-bond between the
phenyl ring and the palladium atom (𝑟 = 2.676 Å). It leads to
formation of compound 8.

2.5. The Reductive Elimination Stage. The last reductive
elimination stage takes place via the TS4 transition state and
requires an activation barrier which is equal to 8.6 kcal/mol.
Thermodynamic factors, on the other hand, favour practically
an irreversible shift of equilibrium towards the product, as
free enthalpy of the system decreases by over 25 kcal/mol as
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a result of this elementary reaction. Notably, the previously
proposed possibility of the rotation of aryls around the Pd-Ar
and Pd-Ar󸀠 bonds in 8 [30], whichmay yield products with an
opposite absolute configuration, has a rotation barrier greater
than 15 kcal/mol. Thus, this could be considered as almost
forbidden and slow; hence the product configuration change
at this stage of the reaction cannot be significant.

3. Conclusions

The DFT calculations performed with the simplified reac-
tion model indicate that the palladium-catalysed process of
asymmetric cross-coupling should take place according to
a four-stage mechanism. It should also be stated that the

presence of substituents in the ortho positions of the sub-
strates (aryl bromide and borate anion) determines a sharp
selection of theoretically possible reaction directions. This
means that, in practice, the conversion of the reacting system
should take place according to a single reaction path only.
Because rupture of existing bonds takes place simultane-
ously with formation of new bonds within all transition
states, the entire process should take place stereoselectively
and lead predominantly to one atropisomeric form. This
assumption makes the task of rationalisation of the stereo-
chemical outcome of the reaction much simpler, since only
one, that is, the first reaction stage, should be analysed to
predict the absolute configuration of a majority of formed
biaryl products.
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[55] R. Jasiński, “Searching for zwitterionic intermediates in Hetero
Diels-Alder reactions between methyl 𝛼,p-dinitrocinnamate
and vinyl-alkyl ethers,” Computational and Theoretical Chem-
istry, vol. 1046, pp. 93–98, 2014.
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